
Custom extension development for EclecticIQ
Platform
Build custom extensions for tailored integrations with EclecticIQ
Platform
Last generated: October 20, 2017

©2017 EclecticIQ

All rights reserved. No part of this document may be reproduced in any form or by any electronic or mechanical means, including information storage and
retrieval systems, without written permission from the author, except in the case of a reviewer, who may quote brief passages embodied in critical articles
or in a review.

Trademarked names appear throughout this book. Rather than use a trademark symbol with every occurrence of a trademarked name, names are used
in an editorial fashion, with no intention of infringement of the respective owner’s trademark.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work,
neither the author nor the publisher shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this book.

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

2
3
3
3
4
4
5
5
6
7
9

10
11
12
13
16
16
18
21
22
22
22
24
24
25
25
25
26
26
27
29
33

Table of contents
Table of contents
Create custom enrichers

About extensions
Create enricher extensions
Prepare the boilerplate

Edit the setup file
Include dependencies
Set the entry point

Define the enricher initialization
Build the enricher

Import dependencies
Set the UI schema definition
Define the UI schema

Field attributes
Define the enricher behavior
Define transport and content handlers

Define the data provider
Define the data transformer

Package and deploy the enricher
Restart processes

Check that the enricher is registered
Make an API call with HTTPie
API call response

Enable the enricher
Initialize the enricher

Create and run the fixtures
Test the enricher

Run extension validation
Error handling

Test the enricher with a test file
Test the enricher through the platfom UI

Disable extensions

Page 3 of 33

Create custom enrichers

Implement custom extensions to integrate EclecticIQ Platform with external intel providers and data
sources through incoming feeds and enrichers, as well as to publish platform intel downstream in your
prevention and detection toolchain.

About extensions
EclecticIQ Platform integrates with many external prevention/detection solutions and intel providers. It can exchange
information through feeds, retrieve data through enrichers, and it can communicate with third-party systems through its
API and ad-hoc apps that implement interoperability with specific products such as Splunk and IBM QRadar.

EclecticIQ Platform ships with out-of-the-box, ready-to-use enrichers to augment cyber threat intel with observables
providing additional context. It also includes a web-based UI to create incoming and outgoing feeds, as needed.

Besides the default feeds and enrichers, you can create and implement your own. Custom feeds and enrichers
implemented by third-parties other than EclecticIQ are called extensions, since they extend the platform native feature set.
You can create extensions to implement additional transport types or content types for incoming or outgoing feeds, as well
as new enrichers to poll data from specific intel providers.

Create enricher extensions
Before getting your hands dirty, have a look at the main steps to create an enricher extension from a boilerplate:

Download, clone, or copy the eclecticiq-extension-example (https://github.com/eclecticiq/platform-
extensions/tree/master/eclecticiq-extension-example) extension.

Import dependencies.

Create a JSON schema for the UI, if your enricher extension features a UI.

Set a schema definition for validation.

Define the enricher type and its instantiation through decorator functions.

Include the necessary logic to configure the enricher behavior:

Define the tasks the enricher should execute;

Define the extract types you want the enricher to look for and retrieve.

Configure appropriate transport and content types to handle data formats and retrieval.

Restart Supervisor, so that all managed processes can configure the newly added extension in Data configuration >
Enrichers.

Enable the extension.

Initialize the extension by running the fixtures (applies only to enricher extensions).

Page 4 of 33

https://github.com/EclecticIQ/platform-extensions/tree/master/eclecticiq-extension-example

Prepare the boilerplate
To make it easier to create custom enricher extensions, you can use our boilerplate enricher: eclecticiq-extension-
example.
It is a sample enricher that augments entities with social URI observables polled from Twitter and/or Facebook.
Use it as a scaffold you can rework and customize into the desired enricher extension.

Download, clone or copy the eclecticiq-extension-example (https://github.com/eclecticiq/platform-
extensions/tree/master/eclecticiq-extension-example) extension, save it locally, and decompress it, if
necessary.

Rename the directories as needed.

In the root directory, open setup.py (https://github.com/eclecticiq/platform-
extensions/blob/master/eclecticiq-extension-example/setup.py):

from setuptools import setup, find_packages

setup(
 name='eclecticiq-extension-example',
 version="1.0",
 description="Example extension for EclecticIQ Platform",

 # Look for packages to build the extension
 packages=find_packages(),

 # List dependencies the extension requires
 install_requires=[
 'eiq-platform'
],

 # Look for and include data files, if applicable
 include_package_data=True,

 # Set an entry point for the extension
 # so that it can initialize
 entry_points={
 'eiq.extensions': [
 'example = eiq.extensions.example:prepare_extension'
],
 }
)

Edit the setup file

These are the setup.py (https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-
extension-example/setup.py) parts you can, and should, edit as applicable:

name

In the extension name, change example to a more meaningful name for your enricher extension, but leave the
eclecticiq-extension- prefix as is.
Example:

Page 5 of 33

https://github.com/EclecticIQ/platform-extensions/tree/master/eclecticiq-extension-example
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/setup.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/setup.py

name='eclecticiq-extension-fraud-ip-observables',

version

Change the version number as appropriate.

Make sure you implement versioning for your enrichers.
For example, increment the version number after adding or removing arguments/parameters.
The platform checks version, and it won’t load the enricher if it detects parameter changes without a corresponding
version number increment.
Example:

version="1.1",

description

Change the description value, so that it provides basic details about the enricher extension.
Example:

description="Custom extension to retrieve and save fraudulent IPs as observables",

Include dependencies
Add to the install_requires list the Python libraries and modules your enricher extension needs to access for it to work
as expected.
eiq-platform is a mandatory dependency, it needs to always be included in the list.
Other Python libraries and modules you need to import and include in this list vary, depending on the specific enricher
extension you are building.

Example:

install_requires=[
 'eiq-platform',
 'requests',
 'cabby',
 'furl'
],

Set the entry point
eiq.extensions is the designated entry point referring to the extension definitions.
The platform needs this pointer to recognize, load, and register extensions. Do not remove it.
Change example to a more meaningful name for your enricher extension, but leave the eclecticiq.extensions. prefix
as is.
Example: eclecticiq.extensions.fraud-ip-observables

Example:

'eiq.extensions': [
 'fraud-ip-observables = eclecticiq.extensions.fraud-ip-observables:prepare_extension'
],

Page 6 of 33

Define the enricher initialization

This part of the procedure customizes the fixtures you will need to run later to initialize the enricher, after enabling it.

prepare_extension defines how to initialize the enricher extension you are building.
In prepare_extension you specify what the extension should get ready before you execute it for the first time.

Change the Extension return values as applicable. Use the actual, correct names, descriptions, and values you define,
set, and plan to use in your enricher extension.

Open init.py (https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/__init__.py).

Boilerplate:

from eiq.extension_api import Extension

from .enrichers import enrich_from_social_network
from .transformers import transform_malware_domainlist_csv
from .provider import oauth_http_download

def prepare_extension():
 return Extension(
 name=__name__,
 description='Example extension for EclecticIQ Platform',
 enrichers=[enrich_from_social_network],
 transformers=[transform_malware_domainlist_csv],
 transports=[oauth_http_download]
)

Example:

Import the 'Extension' class from the extension API
from eiq.extension_api import Extension

Import your custom enricher
from .enrichers import enrich_fraud_ip_observables
Import the data formats the enricher needs to handle
from .transformers import <content_type>
Import the data carrier the enricher uses to exchange data
from .provider import <transport_type>

Define how to initialize the custom enricher
def prepare_extension():
 return Extension(
 name=__name__,
 description='Custom extension to retrieve and save fraudulent IPs as observables',
 enrichers=[enrich_fraud_ip_observables],
 transformers=[<content_type>],
 transports=[<transport_type>]
)

Start by importing the platform class defining extensions, as well as your custom extension, so that we can initialize it. You
import the standard extension class for the platform through the extension_api. This is the dedicated API to use when
developing custom extensions.

Page 7 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/__init__.py

Import the enricher from enrichers.py (https://github.com/eclecticiq/platform-
extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py).
This module defines, among others, enricher extension instance and type, as well as any functions containing the logic
driving the enricher behavior, and the UI schema, if applicable.

Import one or more content types from transformers.py (https://github.com/eclecticiq/platform-
extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/transformers.py),
so that the enricher can recognize and handle the expected data formats.
This module defines the available content types for the data the enricher extension handles: this is where you import the
allowed data formats for the enricher from.

Import a transport type from provider.py (https://github.com/eclecticiq/platform-
extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/provider.py), so
that the enricher can send and receive the expected data.
This module defines the available transport types for the data the enricher extension handles.

Change the description, enrichers, transformers, and transports metadata values Extension returns, so that they
reflect the actual name, description, enricher type, data format, and data carrier to use in the enricher extension.

Build the enricher
Enricher extension logic and any necessary functions that drive the enricher behavior live in the enrichers.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/enrichers.py) module.

Boilerplate:

import json

import requests
from marshmallow import Schema, fields

Import the enricher extension dependencies
from eiq.extensions_api import (
 EnrichmentResult,
 enricher_instance,
 enricher_type,
)

Define the Marshmallow schema for the enricher params
The UI schema is validated against the params defined here
class SocialURIEnricherSchema(Schema):
 check_twitter = fields.Boolean(required=True)
 check_facebook = fields.Boolean(required=True)

Define the UI schema
ui_form_schema = [
 {
 "label": "Check Twitter",
 "name": "check_twitter",
 "required": True,
 "type": "checkbox",
 "format": "bool",
 "hint": "Should the enricher query Twitter"
 },

 {
 "label": "Check Facebook",
 "name": "check_facebook",

Page 8 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/transformers.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/provider.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py

 "name": "check_facebook",
 "required": True,
 "type": "checkbox",
 "format": "bool",
 "hint": "Should the enricher query Facebook"
 },
]

@enricher_instance(
 # Increment the version number if defaults change after
 # deploying the enricher.
 # For example, if it gets new/additional parameters
 version=1,

 # Enricher name and description displayed to users
 name='Example Social URI Enricher',
 description=('Query for registered Twitter/Facebook '
 'accounts with provided handle/name'),

 # Boolean switch to enable or disable the enricher by default
 is_active=True,

 # If the enricher creates entities, this is the default reliability
 # value assigned to them
 source_reliability='C',

 # Additional enricher parameters.
 # They must match the name and type configured in
 # 'ui_form_schema' and in the Marshmallow schema
 check_twitter=True,
 check_facebook=True,
)

@enricher_type(
 # Define the observable types the enricher supports
 input_extract_types=['handle', 'name', 'person'],

 # Assign a UI schema to the enricher editor page in the web UI
 parameter_ui_form_schema=ui_form_schema,

 # Define the validation and deserialization UI schema
 parameter_serialization_schema=SocialURIEnricherSchema,

 # URL templates link users to the enricher source
 source_urls={
 'handle': 'https://twitter.com/${input}',
 'name': 'https://twitter.com/${input}',
 'person': 'https://twitter.com/${input}',
 },
)

Define the logic driving the enricher behavior
def enrich_from_social_network(
 # Request arguments
 extract_type,
 extract_value,
 check_twitter,
 check_facebook):
 # The response should return:
 # - A list with matching observables
 # - A list with the raw responses, for reference
 enrichment_extracts = []
 raw_responses = [] # Keep raw response headers for user reference

 if check_twitter:
 # Send an HTTP HEAD request to Twitter

Page 9 of 33

 # to see if it takes the handle
 twitter_url = 'https://twitter.com/{}'.format(extract_value)
 response = requests.head(twitter_url)

 if response.ok:
 # Return and append the raw response(s)
 raw_responses.append(dict(response.headers))
 # Return and append supported observable types and values
 enrichment_extracts.append({
 'kind': 'uri',
 'value': twitter_url
 })

 if check_facebook:
 # Send an HTTP HEAD request to Facebook
 # to see if it takes the handle
 facebook_url = 'https://facebook.com/{}'.format(extract_value)
 response = requests.head(facebook_url)

 if response.ok:
 raw_responses.append(dict(response.headers))
 enrichment_extracts.append({
 'kind': 'uri',
 'value': facebook_url
 })

 return EnrichmentResult(
 # Return the raw responses as UTF-8 JSON
 raw_data=json.dumps(raw_responses).encode('utf-8'),
 # Return a key/value pair JSON list with the retrieved observables
 extracts=enrichment_extracts,
 # Return a list with entities, if applicable
 entities=[])

Let’s break it down.

Import dependencies

Make sure you include the necessary Python libraries and modules in enrichers.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/enrichers.py), so that the custom enricher extension can access the
functionality required to work as expected.

The Python libraries and modules you may need to make available to your custom extension vary, depending on the
extension design, scope, and purpose.

For example:

Dependency Description

import requests Adds handy automation to HTTP requests (http://docs.python-
requests.org/en/master/).

from marshmallow
import Schema,
fields

Marshmallow schemas validate UI schemas and form input.

Page 10 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py
http://docs.python-requests.org/en/master/

from
eiq.extensions_api
import
(EnrichmentResult,
enricher_instance,
enricher_type,)

The foundations to build your enricher on.

Dependency Description

import json

import requests
from marshmallow import Schema, fields

Import the enricher extension dependencies
from eiq.extensions_api import (
 EnrichmentResult,
 enricher_instance,
 enricher_type,
)

Set the UI schema definition

If your enricher extension features a UI, you need to include a UI JSON schema, which you need to validate.
The schema definition to validate UI schema and form input is based on a Marshmallow schema definition.

The Marshmallow schema (https://marshmallow.readthedocs.io/) defines the behavior of the controls and the
components on the UI form, and the ui_form_schema JSON schema needs to match it to pass validation.

First, import the following classes from Marshmallow:

from marshmallow import Schema, fields

Then, set the Marshmallow schema definition to validate the ui_form_schema JSON schema against.
You can customize the Marshmallow schema definition as needed.

Example:

Define the Marshmallow schema for the enricher params
The UI schema is validated against the params defined here
class SocialURIEnricherSchema(Schema):
 check_twitter = fields.Boolean(required=True)
 check_facebook = fields.Boolean(required=True)

Lastly, include parameter_serialization_schema in the enricher_type decorator in enrichers.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/enrichers.py), and set it so that it points to the appropriate schema
definition name for the UI schema validation.

Example:

Page 11 of 33

https://marshmallow.readthedocs.io/
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py

Define the validation and deserialization UI schema
parameter_serialization_schema=SocialURIEnricherSchema,

Define the UI schema

If your enricher extension requires a UI frontend where users can make selections and set specific options, you need to
include a UI schema in JSON format.
Each JSON field in the schema defines a UI component to implement in the extension. For example, an input field, or a
checkbox.

Include the UI schema as a JSON array inside enrichers.py (https://github.com/eclecticiq/platform-
extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py).
You can customize the UI schema as needed.

Example:

 # Definition of the UI form rendered in the platform UI
 # Data configuration > Enrichers > <enricher_name> > Edit enricher task
 # 'ui_form_schema' is the UI schema name; do not change it.
 ui_form_schema = [
 {
 "label": "Check Twitter",
 "name": "check_twitter",
 "required": True,
 "type": "checkbox",
 "format": "bool",
 "hint": "Should the enricher query Twitter"
 },

 {
 "label": "Check Facebook",
 "name": "check_facebook",
 "required": True,
 "type": "checkbox",
 "format": "bool",
 "hint": "Should the enricher query Facebook"
 },
]

Then, include parameter_ui_form_schema in the enricher_type decorator in enrichers.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/enrichers.py), and set it so that it points to ui_form_schema.

Example:

Assign the UI schema to the enricher editor page in the web UI
parameter_ui_form_schema=ui_form_schema,

You can define any UI schema that satisfies your requirements, provided it complies with the following guidelines:

The UI schema format must be valid JSON.

A UI schema for a form is a user-defined list of fields.

Page 12 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/enrichers.py

Define each field with key/value pairs.

Each key/value pair describes an attribute of the field.

Field attributes
You are free to define the naming convention and the terminology for the field names. However, field attributes are
constrained and predefined. Each field takes at least two or more attributes.

name and type are required attributes, and you always need to include them in a field description.
All other attributes are optional.

name

The name identifying the field in the JSON object.
This name is usually not displayed to users. It is included in the JSON object containing the field, the UI schema, and
the extension schema that is returned when sending an API request to the /api/extensions/ endpoint.
Example: includeWhois

label

The name of the field as displayed as a label on the resulting object in the UI form.
Example: Include whois information

type

It defines the type of field, that is, the object it represents on the UI form:

text: a one-row text input field.
It can take the following sub-attributes:

format: it defines and restricts the allowed input format for the field, which needs to be in the specified format
value.
Allowed values:

datetime

host

url

email

regex

path

text

int

float

bool

textarea: a multiple row alphanumeric text input field.

password: an alphanumeric input field that accepts a user password.

select: a list with multiple options. Users can select one or more options.
It can take the following sub-attributes:

options: a JSON array with key/value pairs. Each key/value pair defines one option.
Format: [{"name": "...", "value" :"..."},...]

multiple: Boolean, either true or false. It defines whether users are allowed to make multiple selections.

Page 13 of 33

radio: a control element that allows users to select one option in a set of options.
It can take the following sub-attributes:

options: a JSON array with key/value pairs. Each key/value pair defines one option.
Format: [{"name": "...", "value" :"..."},...]

checkbox: a control element that allows users to select/deselect, enable/disable an item or a feature.
It can take the following sub-attributes:

options: a JSON array with key/value pairs. Each key/value pair defines one option.
Format: [{"name": "...", "value" :"..."},...]

If you do not include the options sub-attribute, the checkbox type defaults to a single component accepting
Boolean values, either true or false.

extra: include this type if you want to include in your UI form any additional free-form parameters, for example
HTTP headers.
It can take the following sub-attributes:

names: a JSON array holding the name values of the extra free-form parameters. For example, the specific
HTTP header names you want to add.
Format: ["name1", "name2", ...]

allow_new: Boolean, either true or false. It allows/denies adding new keys to the extra parameter list.

required

Boolean, either true or false.
It flags the field as either mandatory, that is, users must specify a value for the field, or optional.

default

Any value you specify for this attribute corresponds to the default value the field is pre-populated with (autofill).

hint

A tooltip text to give a short explanation of the field and the action the user should carry out.
Example: Enter a numeric value between 1 and 10.

when

It defines a conditional flow to show or hide the component when the specified criteria are met or not met.
Format: {"component_x": "value_y"}, that is, when component_x is set to value_y, the component the fields
belongs to is displayed on the UI.

Define the enricher behavior

The foundations of your enricher extension are the enricher_instance and enricher_type decorators.

enricher_instance

This decorator defines the default values the enricher takes when it is instantiated in the platform.

The following arguments are mandatory:

version: make sure you implement versioning for your enrichers.
For example, increment the version number after adding or removing arguments/parameters.
The platform checks version, and it won’t load the enricher if it detects parameter changes without a
corresponding version number increment.

name: a human-readable, user-friendly name that helps user understand what the enricher does.
The name value is displayed on the UI.

Page 14 of 33

description: a human-readable, user-friendly, short free-text description that helps user understand what the
enricher does.
The description value is displayed on the UI.

is_active: the True or False Boolean value controls the state of the enricher Enabled checkbox on the UI: either
selected or deselected, respectively.

The following arguments are optional:

source_reliability: if your enricher extension is designed to create entities as an output, this parameter sets a
default reliability value for the entity data source.

Any custom parameters defining the Marshmallow schema definition to validate the UI schema.

Example:

@enricher_instance(
 # Bounce the version number if you
 # add, change or remove parameters
 version=1,

 name='Example Social URI Enricher',
 description=('Query for registered Twitter/Facebook '
 'accounts with provided handle/name'),

 is_active=True,
 # Optional, if your enricher returns entities
 source_reliability='C',

 # Custom Marshmallow UI schema definition values
 # to validate the enricher UI, if applicable
 check_twitter=True,
 check_facebook=True,
)

enricher_type

This decorator defines the enricher extension behavior. It contains the specific logic and the functionality powering your
enricher.

The following arguments are mandatory:

input_extract_types: a list of observable types.
The observable types in this list are the input data the enricher takes.
When it runs, the enricher searches for enrichment data to augment the observable types in the list.

parameter_ui_form_schema: it needs to refer to ui_form_schema. Do not change the parameter name.

parameter_serialization_schema: it needs to refer to the Marshmallow schema definition. Do not change the
parameter name.

source_urls: a key/value pair dictionary that produces clickable links to external data sources related to the
retrieved observables. Do not change the parameter name.

The key name needs to be an observable type included in input_extract_types.

The value is a URL with the following format: https://<data_source.com>/${input}.
The ${input} URL variable takes the extract_value value.

The resulting URL includes the original query as query URL params.
The resulting clickable link points to the original web site the enrichment data was obtained from.

Example:

Page 15 of 33

http://localhost:3000/_ug/enrichers_enable_disable.html#enable-and-disable-enrichers
http://localhost:3000/_ug/entity_reliability_source.html
http://localhost:3000/_ug/observable_about.html#observable-types

@enricher_type(
 input_extract_types=['handle', 'name', 'person'],

 parameter_ui_form_schema=ui_form_schema,
 parameter_serialization_schema=SocialURIEnricherSchema,

 source_urls={
 'handle': 'https://twitter.com/${input}',
 'name': 'https://twitter.com/${input}',
 'person': 'https://twitter.com/${input}',
 },
)

def magic

Now it’s time for the magic to happen. Define a workhorse function to do the grunt work.

The function you pass with the decorator should contain the necessary logic to search for and retrieve the desired input
data, any conditional flow and error handling, and to output the input data as valid observables for the platform.

The following arguments are mandatory:

extract_type: include this parameter, so that your function can return observable types matching
input_extract_types.

extract_value: include this parameter, so that your function can return values associated with the observable
types defined in input_extract_types.

Any custom-defined Marshmallow schema definition variables, if your enricher features a UI component.

The function should also create two variables to hold the returned data:

enrichment_extracts: an empty list that will be populated with any matching observables included in the
response.

raw_responses: an empty list that will be populated with the raw responses, for reference.

Example:

def my_custom_enricher(
 # Mandatory arguments:
 extract_type,
 extract_value,
 ...,
 # Pass as arguments also the Marshmallow schema definition vars:
 check_twitter,
 check_facebook,
 ...
):

 # The function should return 2 lists:
 # - Any retrieved enrichment observables,
 # - The raw responses, for reference
 enrichment_extracts = []
 raw_responses = [] # Keep raw response headers for user reference

 ...
 # Your black magic happens here
 ...

return EnrichmentResult

Complete the function by defining the objects it should return in the response.

Page 16 of 33

http://localhost:3000/_ug/images/magic.gif
http://localhost:3000/_ug/observable_about.html#observable-types
http://localhost:3000/_ug/observable_about.html#observable-types

The EnrichmentResult class helps store and handle output data. It returns the following output:

Raw response, that is, enrichment raw data (as UTF-8 JSON),

Observables (as a list),

Entities (as a list of entity IDs).

When building an enricher extension, it is a good idea to always use these data types to return, even when no data
may be returned for observables or entities. The raw data response should always be included in the return
arguments.

Example:

return EnrichmentResult(
 raw_data=json.dumps(raw_responses).encode('utf-8'),
 extracts=enrichment_extracts,
 entities=[])

Define transport and content handlers

Your enricher extension needs to include two more components:

provider.py (https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/provider.py): defines a mechanism to transport data.
Typically, a provider implements a data transport protocol, such as HTTP, FTP, TAXII, and so on.
Enrichers require a provider that fetches data from a source, and then passes it on to the platform for further
processing.

transformers.py (https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-
extension-example/eclecticiq/extensions/example/transformers.py): defines one or more mechanisms to
convert retrieved raw data to the JSON format the platform can accept.

Define the data provider
To define the data provider for the enricher, you can use the provider.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/provider.py) as a scaffold you can rework and customize into the desired
data transport provider for your enricher extension.

Begin by importing the necessary Python modules and dependencies to handle the desired source data content type.
In the example, the transport type is HTTP using OAuth authentication.

extension_api is the dedicated API to use when developing custom extensions.
From extension_api, import the following functions:

options: the provider_options passes it as an argument to control and validate UI options.
Marshmallow uses it to set and validate dynamic form options in the UI.

provider: decorator function that marks a function as a provider type.

provider_options: decorator function to define a set of configuration options for a data provider.

from requests_oauthlib import OAuth1Session

from eiq.extensions_api import options, provider, provider_options

Page 17 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/provider.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/transformers.py
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/provider.py

The provider decorator flags a function as a data transport type/data provider in the platform.
The decorator takes the following arguments:

name: an alphanumeric string holding the internal name identifying the data provider.

title: an alphanumeric string an alphanumeric string displayed in the UI. It corresponds to the transport type
name for an enricher or an incoming feed.

description: an alphanumeric string displayed in the UI. It corresponds to a short description about the data
provider/transport type purpose.

The ``provider`` decorator will mark a certain function as a type
of provider, along with some metadata primarily to inform users.
@provider(
 name='eiq.providers.oauth_http_download',
 title='OAuth HTTP Download',
 description=('Download content the configured URL using OAuth 1 '
 'authentication')
)

The provider_options decorator enables you to define any custom or additional data provider settings that platform
users can select and configure in the UI through the enricher form.

The decorator can take any custom argument key names, depending on how the source data provider interface works.
Argument keys can take the following values:

options.boolean: it works like a standard Python bool object; it takes either True or False.
On the UI it displays a selection checkbox form element.

options.datetime: it works like a standard Python datetime.datetime object.
On the UI it displays a date-time calendar picker form element.

options.integer: it works like a standard Python int object.
On the UI it displays a text input form element.

options.password: it works like a standard Python str object.
On the UI it displays a password input form element.

options.string: it works like a standard Python str object.
On the UI it displays a text input form element.

options.url: it works like a standard Python str object.
On the UI it displays a text input form element that validates the input as a valid URL.

Each of these parameters can take additional kwargs to include extra information displayed to users on the UI:

label: an alphanumeric string displayed in the UI. It corresponds to a UI option caption.

hint: an alphanumeric string displayed in the UI. It corresponds to a pop-up tooltip triggered by a mouseover event.

required: flags a UI option as required or optional. It takes either True or False, respectively.

default: depending on the option type, it pre-populates the UI element with a default value.

validate: it takes a function to validate user input with.
Design the validation function so that it takes one value, and it returns False if the value is not valid.

Page 18 of 33

With ``provider_options`` additional configuration for a provider
can be specified. These options will show up to users in the UI in
an HTML form.
@provider_options(
 url=options.url(label="URL", hint="URL to download content from"),
 client_key=options.string(label="Client key"),
 client_secret=options.password(label="Client secret"),
 resource_owner_key=options.string(label="Resource owner key"),
 resource_owner_secret=options.password(label="Resource owner secret"),
)

Time for more magic: define a data provider to do the grunt work. The function you pass with the decorator should contain
the necessary logic to handle data transport for the designated data format, and it should return/submit the data for further
processing in the platform.

The function logic varies, based on your specific needs, and on the source data provider transport and content types.
Make sure the function can ctx.submit or return the data for further processing, depending on how you design it.

The data provider function takes the following arguments:

ctx: this must always be the first argument.

Any arguments specified in provider_options.

The provider function must accept a ``ctx`` object as its first
argument. Other optional arguments are:
:param content_type: The name of the related content_type for the incoming
feed this function runs for.
:param log: A logger instance
def oauth_http_download(
 ctx,
 url,
 client_key,
 client_secret,
 resource_owner_key,
 resource_owner_secret,
 log):

 oauth1_session = OAuth1Session(
 client_key,
 client_secret=client_secret,
 resource_owner_key=resource_owner_key,
 resource_owner_secret=resource_owner_secret)

 rs = oauth1_session.get(url)
 rs.raise_for_status()
 log.info("Fetched {} bytes of data".format(len(rs.content)))
 ctx.submit(rs.content)

Define the data transformer
To define the data format conversion mechanism for the enricher, you can use the transformers.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/eclecticiq/extensions/example/transformers.py) as a scaffold you can rework and customize into the
desired input-data-format-to-JSON converter for your enricher extension.

Begin by importing the necessary Python modules and dependencies to handle the desired source data content type.
In the example, the input data is in .csv format.

Page 19 of 33

http://localhost:3000/_ug/images/magic_2.gif
https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/eclecticiq/extensions/example/transformers.py

import csv
import io

extension_api is the dedicated API to use when developing custom extensions.
From extension_api, import the following functions:

declare_content_type: it enables you to set the input data format your enricher expects to retrieve.

transformer: it enables you to configure the mechanism to convert the expected data input format to platform-
friendly JSON.
It returns a dictionary containing "type": "package" similar to a STIX package, or a dictionary containing "type":
"entities", and "entities": [<dicts with valid entity data>].

from eiq.extension_api import (
 declare_content_type,
 transformer,
)

Define the input data format your enricher expects to retrieve by assigning it declare_content_type as a value.
In the example, the input data is in .csv format.
Use declare_content_type to define the data format by setting the following parameters:

id: the identifier value is a URN (https://tools.ietf.org/html/rfc2141).
Format: urn:<namespace_identifier>:<namespace_specific_string>:<version>
Example: urn:malwaredomainlist:csv:1.0

name: an alphanumeric string displayed in the UI. It corresponds to the enricher name.

description: an alphanumeric string displayed in the UI. It corresponds to a short description about the enricher
purpose.

file_extension: sets the expected file extension type for the input data.
It needs to correspond to the MIME type.
Example: csv

mime_type: sets the expected MIME type (https://www.iana.org/assignments/media-types/media-
types.xhtml) for the input data.
It needs to correspond to the file extension.
Example: text/csv

malware_domainlist_csv = declare_content_type(
 id="urn:malwaredomainlist:csv:1.0",
 name="Malware Domain List CSV",
 description="",
 file_extension="csv",
 mime_type="text/csv",
)

Page 20 of 33

https://tools.ietf.org/html/rfc2141
https://www.iana.org/assignments/media-types/media-types.xhtml

The transformer decorator passes the function you define to handle data conversion from the configured input data
format to platform-friendly JSON.
It takes an incoming_content_types list type argument, whose values are the defined input data format names.

Your custom function should always pass blob as an argument.
The function logic varies, based on your specific needs, and on the source data provider transport and content types.
The generic steps you should consider when building such a function are:

Set the expected data format and data encoding.

Define the logic to iterate through the input data, and to extract the desired data.

Create a variable to act as a container to hold the input raw data in a list.

Return a JSON dictionary with the desired data.

You may want to delegate entity or observable object creation to a separate function. In the example, it is the
make_entity function.

Since the input data format in the example is .csv, the function takes row as a parameter to extract the desired
data, which is then stored in two JSON objects:

data: a JSON array containing the extracted entity or observable object data.

meta: a JSON array containing the extracted entity or observable object metadata.

Return the data and meta JSON objects.

The function you pass with the transformer decorator uses the entity or observable object creation function to return
a JSON array with the extracted (linked) entities.

@transformer(incoming_content_types=[malware_domainlist_csv])
def transform_malware_domainlist_csv(blob):
 # The blob object is of type bytes.
 # The expected encoding from malwaredomainlist.com
 # is utf-8
 csv_data = blob.decode('utf-8')

 # DictReader expects to iterate over lines of text, so we wrap the data:
 csv_data = io.StringIO(csv_data)
 csv_reader = csv.DictReader(
 csv_data,
 fieldnames=[
 'date_utc',
 'domain',
 'ip',
 'reverse_lookup',
 'description',
 'registrant',
 'asn'
]
)

 # List of entities generated form each extracted csv row
 entities = [make_entity(row) for row in csv_reader]

 # Return (linked) entities
 return {
 'linked-entities': {
 'entities': entities,
 },
 }

def make_entity(row):
 data = {
 'type': 'indicator',

Page 21 of 33

 'type': 'indicator',
 'title': row['domain'] + ' MalwareDomainList',
 'description': (
 'domain: {}\n'
 'ip: {}\n'
 'reverse lookup: {}\n'
 'description: {}\n'
 'registrant: {}\n'
 'asn: {}'.format(
 row['domain'],
 row['ip'],
 row['reverse_lookup'],
 row['description'],
 row['registrant'],
 row['asn'])),
 'timestamp': row['date_utc'],
 'producer': {
 'description': 'Malware Domain List',
 'type': 'information-source',
 },
 }

 meta = {
 'manual_extracts': [
 {'kind': 'uri', 'value': row['domain'], 'level': 1},
 {'kind': 'ipv4', 'value': row['ip'], 'level': 1},
 {'kind': 'domain', 'value': row['reverse_lookup'], 'level': 1},
 {'kind': 'registrar', 'value': row['registrant'], 'level': 1},
 {'kind': 'asn', 'value': row['asn'], 'level': 1},
],
 }

 return {'data': data, 'meta': meta}

Package and deploy the enricher
Create a Python package for the extension you just built, and then use pip install to install it on the target system
where the platform is running.

Pack the extension to create a source distribution by running the following command(s):

$ python setup.py sdist

Copy the packaged extension to the target location where you want to deploy it.

Launch the platform Python virtual environment. To enable venv, run the following command(s):

$ source /opt/eclecticiq/platform/api/bin/activate

In the virtual environment, install the extension by running the following command(s):

$ pip install /tmp/<your-custom-enricher-extension>.tar.gz

The pip example installs from /tmp/ to avoid dealing with file access rights and permissions.

Page 22 of 33

Restart processes

After completing the extension installation restart all Supervisor processes, so that all managed processes can configure
the newly added extension in Data configuration > Enrichers .

Reload Supervisor configurations and restart all Supervisor-managed processes by running the following command(s):

$ supervisorctl reload

Check that the enricher is registered

Make an API call with HTTPie

Verify that the extension is picked up and registered correctly.
To do so, save the following script to a .sh file, and then make it executable:

Page 23 of 33

#!/bin/bash

#
Helper for interacting with the platform API from the command line. This tool
is a wrapper around httpie. It will take care of authentication and some
other things. It takes at least three arguments:
#
- host name
- http method
- relative url (without the /api/ part)
#
Any additional arguments are propagated to httpie.
#
Examples:
#
platform-api-http https://some.host/ GET /users/
#
platform-api-http localhost:8000 POST /some/endpoint/ @request-stored-in-a-file.json
#

set -e

readonly HTTPIE=http
readonly HTTPIE_ARGS="--check-status --verify=no"
readonly USERNAME=<valid_platform_signin_user_name>
readonly PASSWORD=<valid_platform_signin_password>

usage() {
 echo "Usage: $(basename $0) host method path [http-args]" > /dev/stderr
 exit 1
}

main () {
 local HOST="$1"
 local METHOD="$2"
 local API_PATH="$3"
 shift 3 || usage
 local TOKEN=$(${HTTPIE} ${HTTPIE_ARGS} POST "${HOST}/api/auth" username=${USERNAME}
password=${PASSWORD} | jq --raw-output '.token')
 local URL="${HOST}/api${API_PATH}"
 ${HTTPIE} ${HTTPIE_ARGS} ${METHOD} ${URL} Authorization:''"Bearer ${TOKEN}"'' "$@"
}

main "$@"

To make the script executable, run the following command(s):

$ chmod +x ~/<filename>.sh

The script takes the following input parameters:

Parameter Description

https://<platform_host>/ Required — The name of the host used to reach the API endpoint and to communicate
with the API service.

POST, GET, PUT, DELETE Required — A valid HTTP method
(http://www.restapitutorial.com/lessons/httpmethods.html) to create, read,
update, or delete a resource.

Page 24 of 33

http://www.restapitutorial.com/lessons/httpmethods.html

/<API_endpoint>/ Required — A relative URL pointing to the API endpoint that exposes the service you
want to consume.

?url=true&query=search-
or-filter¶ms=4

Optional — URL query parameters to send any additional search parameters and/or to
filter the results returned in the response.

Parameter Description

To make a HTTPie (https://httpie.org/) call using the script, use the following format:

$ platform-api-http https://<host> <method> <api_path>

To check if the newly created enricher extension is correctly registered in the platform, make an API call to the
/extensions/ API endpoint:

$ platform-api-http https://platform.host.com get /extensions/

API call response

The call returns a JSON object containing all registered extensions.
Search for your enricher extension by name, description, or creation date.
If your enricher extension is included in the returned list, it is registered correctly.

Enable the enricher
In the returned JSON object listing all registered extensions, search for your extension.

In the extension JSON object, look for the following fields:

id: its value is a progressive integer that uniquely identifies the extension.

is_active: Boolean, either True or False. This flags the extension as either enabled or disabled, respectively.

If is_active is set to False, the extension is currently disabled, and you need to enable it before you can use it.
To enable the extension, make the following API call:

$ platform-api-http https://{platform_host} put /extensions/{id_number} data:='{ "data" : {
"is_active" : true } }'

Besides appending URL query parameters, you can also send your request parameters as a JSON file.
Example:

$ platform-api-http https://platform.host/ get /entities/ @request-parameters.json



Page 25 of 33

https://httpie.org/

Enabled extension names should not be included in the DISABLED_EXTENSIONS list in the
/opt/eclecticiq/etc/eclecticiq/platform_settings.py configuration file.
Any extensions on this list are automatically disabled.
If an extension is on this list and you want to enable it, remove it from the list.

Initialize the enricher
The enricher extension is enabled, but not yet initialized. Platform enrichers though need to be initialized through fixtures
before they become available.

Create and run the fixtures

Log in to the system hosting the platform with either a user profile with admin rights, or with the eclecticiq user.
You may need to grant the eclecticiq user admin privileges. If so, run the following command(s):

Explicitly set the platform environment variable in the platform configuration file:

$ export EIQ_PLATFORM_SETTINGS=/opt/eclecticiq/etc/eclecticiq/platform_settings.py

Launch the platform Python virtual environment. To enable venv, run the following command(s):

$ source /opt/eclecticiq/platform/api/bin/activate

Start a Python shell:

$ /opt/eclecticiq/platform/api/bin/eiq-platform shell

In the Python shell, create the fixtures for the extensions by running the following command(s):

>>> from eclecticiq.extensions.boilerplate import create_fixtures
>>> create_fixtures()

Test the enricher

When you pass a JSON object with entity data in the body of your API request, you always need to wrap it in
a data wrapper: { "data" : { ... } }.



Page 26 of 33

“Nah, my code doesn’t need testing.”
(anonymous, booted)

Run extension validation

The eiq-platform extensions validate command validates the state of all registered and enabled extensions.

If the validation completes successully, the command returns Extensions look OK.

If the validation fails for one or more extensions, the command returns Validation for {extension_name}
failed:, and it includes exception information for troubleshooting.

This command validates extensions based on the following criteria:

The custom enricher extension name needs to match the name value defined in setup.py

The extension name needs to be included in the platform extension_registry list, so that the platform can correctly
recognize it and load it.

The extension name should not be included in the DISABLED_EXTENSIONS list in the
/opt/eclecticiq/etc/eclecticiq/platform_settings.py configuration file.

The extension needs to support the configuration parameters of any enricher tasks associated with it.

To run eiq-platform extension validate, do the following:

Explicitly set the platform environment variable in the platform configuration file;

Run the command:

$ export EIQ_PLATFORM_SETTINGS=/opt/eclecticiq/etc/eclecticiq/platform_settings.py
$ /opt/eclecticiq/platform/api/bin/eiq-platform extensions validate

Error handling
If the validation detects issues that can prevent extensions from working correctly, it returns error messages with a short
description of the problem.

Error message Description

Validation for
{extension_name}
failed:

The enricher extension did not pass validation. Review the exception information included
in the error message to start troubleshooting.

Extension
'{extension_name}' is
in the list of
disabled extensions.

The extension name is included in the DISABLED_EXTENSIONS list in the
/opt/eclecticiq/etc/eclecticiq/platform_settings.py configuration file. The extension enricher is
disabled. Enable it.

Unknown extension
'{extension_name}'

The extension name is not included in DISABLED_EXTENSIONS list, or in the
extension_registry list. Start troubleshooting by checking packaging and deployment ,
and that the enricher extension is registered.

Page 27 of 33

http://localhost:3000/_ug/enrichers_enable_disable.html#enable-and-disable-enrichers

Invalid parameters
for enricher
({extension_name}).
Errors:
{returned_error_list}

One or more parameters are invalid. For example, they may be assigned a wrong format,
or the enricher extension parameter schema is not validated correctly.

Task has parameters
but enricher does
not support any.

The enricher extension does not support one or more parameters defined in the enricher
extension parameter schema.

Error message Description

Test the enricher with a test file

You can test your code programmatically by creating a test file that provides a valid sample request and a valid sample
response for the enricher extension you built. The test_socialurienricher.py
(https://github.com/eclecticiq/platform-extensions/blob/master/eclecticiq-extension-
example/tests/test_socialurienricher.py) file provides a boilerplate to build your customized enricher extension
test file.

The test file uses HTTPretty (https://httpretty.readthedocs.io/en/latest/index.html) to mock HTTP
responses, and it makes REST API testing easy and transparent.
Check the HTTPretty GitHub repository (https://github.com/gabrielfalcao/httpretty) for more details and
usage examples.

Example:

Page 28 of 33

https://github.com/EclecticIQ/platform-extensions/blob/master/eclecticiq-extension-example/tests/test_socialurienricher.py
https://httpretty.readthedocs.io/en/latest/index.html
https://github.com/gabrielfalcao/HTTPretty

Import the libraries, modules and classes you need to test your extension
import httpretty

from <path.to.your.custom.enricher.extension> import (<CustomEnricherExtensionName>)

@httpretty.activate
This example uses dummy names and values.
Replace them with the appropriate ones for your extension.
This function mocks a HTTP 200 response.
def test_socialurienricher_found():

 # Mock the API endpoint and any additional URL params
 # Mock the HTTP status code the response should return
 httpretty.register_uri(
 httpretty.HEAD, 'https://twitter.com/jhonny', status=200)

 httpretty.register_uri(
 httpretty.HEAD, 'https://facebook.com/jhonny', status=200)

 # Mock the observable types and values the response should return
 result = enrich_from_social_network(
 extract_type='name',
 extract_value='jhonny',

 # Mock any UI-configurable settings
 check_twitter=True,
 check_facebook=True,
)

 # Verify that the response returns
 # the expected amount of observables
 # generated from the retrieved data
 assert len(result.extracts) == 2

 assert all(e['kind'] == 'uri' for e in result.extracts)

 values = [e['value'] for e in result.extracts]

 assert 'https://facebook.com/jhonny' in values
 assert 'https://twitter.com/jhonny' in values

@httpretty.activate
This function mocks a HTTP 404 response.
def test_socialurienricher_not_found():
 httpretty.register_uri(
 httpretty.HEAD, 'https://twitter.com/jhonny', status=404)
 httpretty.register_uri(
 httpretty.HEAD, 'https://facebook.com/jhonny', status=404)

 result = enrich_from_social_network(
 extract_type='name',
 extract_value='jhonny',
 check_twitter=True,
 check_facebook=True,
)

 assert len(result.extracts) == 0

Page 29 of 33

Test the enricher through the platfom UI

To check if your enricher extension is available in the platform UI, go to Data configuration > Enrichers .

Your enricher extension should be displayed in the tiled overview, and the corresponding Enabled checkbox should be
selected to notify that it is enabled.

To test if your enricher extension works as expected, look for an entity with observables that your enricher extension
supports.

Trigger a manual enrichment:

On the entity detail pane, click Observables.

The Observables tab shows an overview of the enrichment observables the entity has been augmented with.

To manually enrich the entity observables:

Click the  refresh icon to trigger a task run that polls all the enrichers configured for the entity.

Alternatively:

From the Actions pop-up menu, select Enrich > Enrich with all .

The platform polls all applicable enrichers for the entity, and it enriches all the entity observables with the retrieved
data.

To poll a specific enricher:

From the Actions pop-up menu, select Enrich, and then click the specific enricher whose task run you want to trigger.

The platform polls the specified enricher for the entity, and it enriches all supported entity observables with the
retrieved data.

Page 30 of 33

http://localhost:3000/_ug/images/enricher_task_active.png

If you do not see any new observables after polling your enricher extension, check if the enricher crashed, and start
investigating possible causes for the malfunction.

In the platform UI, go to Data configuration > Enrichers .
On the enricher catalog page you can see a tile overview of the configured enrichers for the platform.

Look for your enricher extension. If a (!) icon is displayed, the enricher task failed to run correctly.

Page 31 of 33

http://localhost:3000/_ug/images/enrichment_manual_2.png

Click the enricher tile.

On the enricher detail page, click (!) Failure.

Page 32 of 33

http://localhost:3000/_ug/images/enricher_task_failure.png

An error dialog is displayed. The dialog title notifies the type of error, whereas the traceback area gives a detailed stack
trace in reverse chronological order. The stack trace should give you at least some hints about the possible causes of
the failure.

Page 33 of 33

http://localhost:3000/_ug/images/enricher_task_failure_2.png

Disable extensions
To disable an enricher extension and prevent the platform from loading it, do the following:

Open /opt/eclecticiq/etc/eclecticiq/platform_settings.py in read-write mode.

Browse to the DISABLED_EXTENSIONS parameter.
If it is not there, add it to the settings file.
This parameter is a list holding the name values of all disabled extensions, as defined in the setup file.

Add your enricher extension name value to the list.
Example:

DISABLED_EXTENSIONS = [
 'eclecticiq-extension-fraud-ip-observables',
 ...,
]

Save the settings file and exit.

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 34 of 33

http://localhost:3000/_ug/images/enricher_task_failure_3.png

	Table of contents
	Create custom enrichers
	About extensions
	Create enricher extensions
	Prepare the boilerplate
	Edit the setup file
	Include dependencies
	Set the entry point

	Define the enricher initialization

	Build the enricher
	Import dependencies
	Set the UI schema definition
	Define the UI schema
	Field attributes

	Define the enricher behavior
	Define transport and content handlers
	Define the data provider
	Define the data transformer

	Package and deploy the enricher
	Restart processes

	Check that the enricher is registered
	Make an API call with HTTPie
	API call response

	Enable the enricher
	Initialize the enricher
	Create and run the fixtures

	Test the enricher
	Run extension validation
	Error handling

	Test the enricher with a test file
	Test the enricher through the platfom UI

	Disable extensions

