
EclecticIQ Platform user guide
Publish and share intel with outgoing feeds — 4/4
Last generated: October 20, 2017

©2017 EclecticIQ

All rights reserved. No part of this document may be reproduced in any form or by any electronic or mechanical means, including information storage and
retrieval systems, without written permission from the author, except in the case of a reviewer, who may quote brief passages embodied in critical articles
or in a review.

Trademarked names appear throughout this book. Rather than use a trademark symbol with every occurrence of a trademarked name, names are used
in an editorial fashion, with no intention of infringement of the respective owner’s trademark.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the preparation of this work,
neither the author nor the publisher shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this book.

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

2
4
4
4
4
4
6
6
7
7
8
8
8
9
9

10
10
12
12
13
13
14
15
15
15
16
16
17
17
18
19
19
21
22
22
22
23
23
24
24
25
26
26
28
29
29
29
30
31
31
32
33
33
34
35
36
37
37

Table of contents
Table of contents
User guide to EclecticIQ Platform

Scope
Goal
Audience
Feedback

Configure outgoing feeds
Configure the general options
Set a schedule
Set TLP filters
Set reliability and relevancy
Set observable filters
Anonymize data

Skip paths
Replace paths

Save options
Configure transport and content for specific outgoing feeds

Start and stop feeds
Manually start a feed
Manually stop a feed

Suspend and disable a running feed
Stop and terminate a running feed

Configure email transport and content
About Send email
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Configure FTP upload transport and content
About FTP upload
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Configure HTTP download transport and content
About HTTP download

HTTP endpoints
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Configure Mount point upload transport and content
About Mount point upload

Page 3 of 66

37
38
38
39
39
40
41
41
43
44
44
44
44
45
46
46
47
49
49
49
50
51
52
53
53
54
55
56
57
57
57
58
58
59
59
60
61
61
63
64
64
64
66

Configure the transport type
Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Configure Syslog push transport and content
About Syslog push
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV

Configure TAXII inbox transport and content
About TAXII inbox
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Configure TAXII poll transport and content
About TAXII poll
Configure the transport type

Configure the transport type
Configure the content type

ArcSight CEF
EclecticIQ Entities CSV
EclecticIQ Observables CSV
EclecticIQ JSON
Plain text value
STIX 1.2

Outgoing feeds reference
Available outgoing feeds
Content types
Transport types

Page 4 of 66

User guide to EclecticIQ Platform

This user guide helps you configure the main options of the platform, as well as familiarize with
EclecticIQ Platform, so that you can start collecting and analyzing potential threats efficiently.

Scope
The user guide to EclecticIQ Platform aims at providing clear and to-the-point help to get you acquainted with the threat
intelligence platform, so that you can configure it as needed, and you can use it to collect and analyze intelligence on
potential threats, as well as share it and collaborate with other analysts.

Although it is not a complete reference manual, this guide shows end-users how they can use the platform and its rich
feature set to collect data, to analyze and investigate potential threats, and to collaborate and share intelligence with other
analysts.

Goal
Learn how to incorporate the platform in your daily workflow as a poweful tool to:

Automate data ingestion

View, edit, create, and delete platform entities

Enrich entities with additional contextual details

Analyze entities on the graph to identify potential threats and their relationships

Search, filter, and slice data using rules

Share your findings and collaborate

Audience
This document targets the following audience:

Cyber threat intelligence analysts

Cyber threat intelligence specialists

Feedback
No one reads manuals, ever. We know.
Yet, we strive to give you clear, concise, and complete documentation that helps you get stuff done neatly.

Page 5 of 66

We are committed to crafting good documentation, because life is too short for bad doc.
We appreciate your comments, and we’d love to hear from you: if you have questions or suggestions, drop us a line and
share your thoughts with us!

 The Product Team

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 6 of 66

mailto:support@eclecticiq.com?subject=Feedback on the doc

Configure outgoing feeds

Configure outgoing feeds to publish cyber threat intelligence through the platform to instrument
external tools and devices, and to share intelligence with selected recipients within the organization,
as well as with external third-parties.

EclecticIQ Platform uses outgoing feeds to publish and share cyber threat intelligence in multiple formats through a
number of configurable transport channels.

You can share intelligence with co-workers and teams within the organization, as well as with external recipients.

You can also use outgoing feeds to route data to external devices to initiate specific follow-up actions, based on the
data type being transmitted, and the receiving device.

Outgoing feeds are a powerful tool to disseminate intelligence and promote constructive collaboration, and to
programmatically act on intelligence by automating tasks in your security toolchain.

Once it is set up and it is running, an outgoing feed provides a data stream that the intended recipients can consume. For
example, an external device can receive platform data through an outgoing feed, and it can react to it by initiating
predefined actions such as closing open ports or blacklisting malicious IP addresses and domain names.

A minimal outgoing feed configuration includes:

A data source: the data source of an outgoing feed is always a dataset.
You can configure as many datasets as necessary to act as sources for an outgoing feed.

A transport type: the vehicle carrying the data.
Typically, this is a communications protocol like TAXII, HTTP, FTP, IMAP, or Syslog.

A content type: the outgoing data format the platform is publishing through the outgoing feed.
For example, STIX, JSON, CSV, or plain text.

An update strategy : the condition(s) defining how content is selected for inclusion in the outgoing feed.
For example, you can choose to include in an outgoing feed only new entities, or both new and existing entities.

This article describes how to configure the general options for outgoing feeds to publish EclecticIQ Platform data.
These options are identical for all outgoing feeds.

To configure transport type and content type, as well as any other specific options for a particular outgoing feed, follow the
links under Configure transport and content for specific outgoing feeds.

Configure the general options

On the top navigation bar, select Data configuration > Outgoing feeds .

On the top-left corner of the page click the  icon to open the outgoing feed editor.

The Outgoing feeds page displays an overview of the configured outgoing feeds to publish and distribute selected
intelligence from the platform to external parties, services, and systems.

On the Create outgoing feed form you can populate the input fields to define the intel provider/data source for the feed,
and the feed behavior.

Input fields marked with an asterisk are required.

Page 7 of 66

http://localhost:3000/_ug/entity_dataset_add.html

Under Feed name, enter a name for the feed you are creating. It should be descriptive and easy to remember.

Transport and content

Under Transport type and Content type , select the appropriate options to configure transport and content for the
specified outgoing feed.

Set a schedule
Under Execution schedule you can define how often you want to run the feed task:

None: scheduled feed execution is disabled. You need to manually trigger the task to ingest or to publish data through
an incoming or an outgoing feed, respectively.

Every [n] minutes: the feed task runs automatically once every [n] minutes, where [n] defines the selected time
interval in minutes.
You define the execution interval in 5-minute increments from the corresponding drop-down menu.

Every hour, [n] minutes past the hour : the feed task runs automatically once an hour every hour at the specified
minute offset from the hour.
You define how long in minutes after the beginning of an hour the task should run from the corresponding drop-down
menu.

Every [n] hours : the feed task runs automatically once every [n] hours, where [n] defines the time interval in hours
between two consecutive feed task runs.
You define how long the time interval between feed executions should be by selecting the number of hours from the
corresponding drop-down menu.

Every day at [time]: the feed task runs automatically once a day at the specified time.
You define the time of the day when the task should run from the corresponding drop-down menus.

Every [n] days: the feed task runs automatically once every [n] days, where [n] defines the time interval in days
between two consecutive feed task runs.
You define how long the time interval between feed executions should be by selecting the number of days from the
corresponding drop-down menu.

Every week on [day of the week] at [time] : the feed task runs automatically once a week on the designated day, at
the specified time.
You define the day of the week and time of the day when the task should run from the corresponding drop-down
menus.

Every month on [day of the month] at [time] : the feed task runs automatically once a month on the designated day
of the month, at the specified time.
You define the day of the week and time of the day when the task should run from the corresponding drop-down
menus.
Keep in mind that not all months of the year have 30 or 31 days.

Set TLP filters

Page 8 of 66

Override TLP overwrites the TLP (https://www.us-cert.gov/tlp) color code associated with the feed entities with
the one you set here. The selected TLP value is assigned to all the entities in the feed.

You can override the original or the current TLP color code of an entity, an incoming feed, or an outgoing feed.
When working as a filter, TLP colors select a decreasing range: if you set a TLP color as a filter the enricher, the feed,
or the returned filtered results include all the entities flagged with the selected TLP color code, as well as all the entities
whose TLP color indicates that they are progressively lower risk, less sensitive, and suitable for disclosure to broader
audiences.
For example, if you select green the filtered results include entities with a TLP color set to green, as well as entities with
a TLP color set to white, and entities with no TLP color code flag.

Filter TLP includes in the an incoming or an outgoingan outgoing feed any entities flagged with the selected TLP color
code, as well as entities whose TLP color indicates that they are suitable for progressively broader audiences.
For example, if you select green, the feed includes entities with TLP set to green and to white.

Set reliability and relevancy
Source reliability: from the drop-down menu select an option to flag the feed or enricher content with a predefined
reliability value to help other users assess how trustworthy the data source is.
Values in this menu have the same meaning as the first character in the two-character Admiralty System code
(https://en.wikipedia.org/wiki/admiralty_code).
Example: B - Usually reliable

Relevancy threshold (%) allows you to set a filter to include in the feed only entities whose relevancy is higher than
the value defined here.

Set observable filters
Allowed observable states: from the drop-down menu select one or more observable states to include in the feed
data only entities whose observable states match at least one of the selections defined here.

Observable types: from the drop-down menu select one or more observable types to include in the outgoing feed only
entities whose observable types match at least one of the selections defined here.

Enrichment observable types : from the drop-down menu select one or more enrichment observable types to include
in the outgoing feed only entities whose enrichment observable types match at least one of the selections defined here.

Click Save to store your changes, or Cancel to discard them.

The filters work independently of each other: there are no Boolean AND or OR to join multiple filters into a serial pipeline.

Anonymize data
In this section you can define specific fields and data to be either excluded from the outgoing feed, or replaced with other
data. Data anonymization enables you to remove sensitive data from the published content, or to replace it with other
non-sensitive information that can be safely disclosed.

Page 9 of 66

https://www.us-cert.gov/tlp
http://localhost:3000/_ug/entity_tlp_filter.html
http://localhost:3000/_ug/entity_tlp_filter.html
http://localhost:3000/_ug/entity_reliability_source.html
https://en.wikipedia.org/wiki/Admiralty_code
http://localhost:3000/_ug/maliciousness_set.html#set-observable-maliciousness
http://localhost:3000/_ug/observable_about.html#observable-types
http://localhost:3000/_ug/enrichers_enrichment.html#enrichment-data-types

Anonymization works only at entity level. It is not possible to anonymize data inside observables. You can anonymize
entity data before publishing it through an outgoing feed in one of the following ways:

You can flag data to be skipped: the data is excluded from the outgoing feed.

You can flag data to be replaced: the data is replaced with the specified replacement data before being published
through the outgoing feed.

Skip paths

In this field you can define specific entity fields, that is, specific locations in the entity JSON data structure whose data you
want to exclude from the outgoing feed.
Any values related to the path options you set in this field are ignored.

In the Skip paths input field, select one or more entity fields whose data you want to exclude from publication through
the outgoing feed.
The platform searches for the specified entity fields and the corresponding values, and it strips the data before
publication. This action applies to all entities published through the outgoing feed.

From the drop-down menu select entity fields to ignore:

Entity type or area Skip path option Corresponding JSON path Description

Common Information source, Identity data.information_source.identity

Common Information source, References data.information_source.references

Common Title data.title

Incident Affected assets, Properties
affected

data.affected_assets

Indicator Observables ``

Indicator Sightings ``

Sighting Raw events ``

Sighting Security controls, Identity ``

Sighting Security controls, References ``

TTP Resources, Infrastructure ``

TTP Resources, Persona ``

Replace paths

Here you can define specific entity fields and specific data patterns that the rule replaces with user-defined values before
publishing the data through the outgoing feed.

To replace values in one or more entity fields with other values that are suitable for publication, do the following:

Click  Add or  More to add a filtering option.

Page 10 of 66

Under Path, enter the JSON path pointing to the entity field whose value you want to replace.

Under Pattern enter a regex defining a data pattern to identify the value you want to replace.
Pattern supports only Elasticsearch regular expression syntax
(https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-
query.html#regexp-syntax).
The main peculiarities of the Elasticsearch query regex syntax are:

Anchors (^ and $) are implied at the beginning and at the end of the regex. You do not need to include them in the
regex you input.

If you insert explicit anchor characters in the Value field, they are interpreted as literal values.

You need to escape special characters (. ? + * | { } [] () " \).
To escape a special character, prepend a backslash \ to it. Example: \{ \}

Under Value enter the actual value that should replace the string matching the regex data pattern in the outgoing feed.

Click  Add or  More to add new rows/new input fields as needed.

Example:

// Path: where to look for the values to replace
data.victim_targeting.identity.name

// Pattern: values matching the regex are replaced
\[Aa\]l\?ateleco*

// Value: value replacing the strings matching the regex
The Swedish Chef

Save options
Besides committing current data by clicking Save, you can also click the downward-pointing arrow on the Save button to
display a context menu with additional save options:

Save and new: saves the current data for the active item, and it allows you to start creating a new item of the same
type right away. For example, a dataset, a feed, a rule, a workspace, or a task.

Save and duplicate: saves the current data for the active item, and it creates a pre-populated copy of the same item,
which you can use as a template to speed up manual creation work.

Configure transport and content for specific outgoing feeds
Configure email transport and content

Configure FTP upload transport and content

At this moment, Elasticsearch regular expression syntax optional operators
(https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-
query.html#_optional_operators) are not supported.



Page 11 of 66

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#regexp-syntax
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-regexp-query.html#_optional_operators

Configure HTTP download transport and content

Configure Mount point upload transport and content

Configure Syslog push transport and content

Configure TAXII inbox transport and content

Configure TAXII poll transport and content

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 12 of 66

Start and stop feeds

Enable and disable feeds, as well as manually trigger a feed task run or stop a running feed.

After configuring a feed, you can set a schedule to automate feed execution over time. If you do not set an execution
schedule, the feed does not run, that is, it does not fetch or publish any data.

Manually start a feed
You can manually start an incoming or an outgoing feed run in one of the following ways:

On the outgoing feed overview page

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to run an incoming or an outgoing feed.

On the feed overview page, click the  icon corresponding to the feed you want to run.

From the drop-down menu select Run now.

On the outgoing feed entity detail pane

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to run an incoming or an outgoing feed.

On the feed overview page, click anywhere on the row corresponding to the feed you want to run.

On the Details tab on feed detail pane click Run now.

Through the Actions menu

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to run an incoming or an outgoing feed.

On the feed overview page, click anywhere on the row corresponding to the feed you want to run.

Page 13 of 66

http://localhost:3000/_ug/images/feed_run_1.png
http://localhost:3000/_ug/images/feed_run_2.png

On the Details tab on feed detail pane, scroll to the bottom of the pane, and then click Actions.

From the pop-up menu select Run now.

Manually stop a feed
You can either manually suspend/disable or stop/terminate a running incoming or outgoing feed.

Suspend and disable a running feed

Page 14 of 66

http://localhost:3000/_ug/images/feed_run_3.png

To disable an active feed, do the following:

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to run an incoming or an outgoing feed.

On the feed overview page, click anywhere on the row corresponding to the feed you want to run.

On the Details tab on feed detail pane click Disable.
You can enable the disabled feed at any time by clicking Enable.

You can disable feed execution also by setting the feed execution schedule to None:

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to suspend an incoming or an outgoing feed.

On the feed overview page, click the  icon corresponding to the feed you want to run.

From the drop-down menu select Edit.

On the feed configuration page, go to the Schedule section, and then set Execution schedule to None.

Click Save to store your changes, or Cancel to discard them.

Alternatively:

Go to Data configuration > Incoming feeds or to Data configuration > Outgoing feeds , depending on whether you
want to run an incoming or an outgoing feed.

On the feed overview page, click anywhere on the row corresponding to the feed you want to run.

On the feed detail pane, scroll to the bottom of the pane, and then click Actions.

From the drop-down menu select Edit.

On the feed configuration page, go to the Schedule section, and then set Execution schedule to None.

Click Save to store your changes, or Cancel to discard them.

Stop and terminate a running feed

To stop the execution of a running feed and kill the task, do the following:

On the left-hand navigation sidebar, click  > System jobs > Running .

On the System jobs > Running overview page, browse to the running task(s) you want to terminate, and then click
the corresponding  Terminate button to instantly stop executing the selected task(s).

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 15 of 66

http://localhost:3000/_ug/config_in_feeds_gen_settings.html#set-a-schedule
http://localhost:3000/_ug/config_in_feeds_http.html#set-a-schedule

Configure email transport and content

Set up and configure transport and content types for Send email outgoing feeds to publish selected
platform data as email attachments.

To configure the general options for the Send email outgoing feed, see Configure outgoing feeds.

About Send email
This feed source enables intelligence dissemination through the following channels:

Feed Published data

Send email The feed publishes entities and observables in the selected content type as email attachments
to the intended recipients. Each time the outgoing feed task runs, it generates a data package
containing zero or more entities, depending on the outgoing feed update strategy, and on the
feed data source containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

Send email ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

 STIX 1.2

Page 16 of 66

Configure the transport type

Transport type : from the drop-down menu select Send email.

Under Transport configuration set the email transport type options:

Mail subject: enter a short, descriptive subject for the email notifications delivered through the outgoing feed.

Platform groups : restricts access to the outgoing feed to the groups you select from the drop-down menu, and to
their member users. All the members of the selected group(s) will receive email notifications with the outgoing feed
data.

Platform users : if you want to further limit the outgoing feed email recipients to only some members of the selected
group(s), from the drop-down menu select one or more users. In this case, only the selected users belonging to the
designated platform groups receive the outgoing feed email notifications.

Include documents attached to entities: select this checkbox to to include in the outgoing feed also any attachments
to the entities such as MS Word documents or PDF files.

Configure the content type

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The Send email transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Page 17 of 66

http://localhost:3000/_ug/manage_groups.html
http://localhost:3000/ug/permissions_user_groups_roles.html

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

Page 18 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Page 19 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value
The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 20 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

Page 21 of 66

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 22 of 66

Configure FTP upload transport and content

Set up and configure transport and content types for FTP upload outgoing feeds to publish selected
platform data to an FTP server.

To configure the general options for the FTP upload outgoing feed, see Configure outgoing feeds.

About FTP upload
This feed source enables intelligence dissemination through the following channels:

Feed Published data

FTP upload The feed publishes entities and observables in the selected content type to the specified
destination location on an FTP server. Each time the outgoing feed task runs, it generates a
data package containing zero or more entities, depending on the outgoing feed update strategy,
and on the feed data source containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

FTP upload ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

 STIX 1.2

Page 23 of 66

Configure the transport type

The FTP upload transport type for outgoing feeds publishes the supported content types to the specified location on the
target FTP server.

Transport type : from the drop-down menu select FTP upload.

Under Transport configuration set the FTP transport type options:

FTP server URL : the target ftp:// location on the FTP server to upload the outgoing feed content to, so as to make it
available for retrieval.
Example: ftp://ftp.server.com/feeds/outgoing/folder

Username: a valid user name to authenticate and be granted the necessary authorization to upload the outgoing feed
content to the designated FTP server location.

Password: a valid password to authenticate and be granted the necessary authorization to upload the outgoing feed
content to the designated FTP server location.

Include documents attached to entities: select this checkbox to to include in the outgoing feed also any attachments
to the entities such as MS Word documents or PDF files.

Configure the content type

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The FTP upload transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Page 24 of 66

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

Page 25 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Page 26 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value
The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 27 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

Page 28 of 66

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 29 of 66

Configure HTTP download transport and content

Set up and configure transport and content types for HTTP download outgoing feeds to publish
selected platform data to an HTTP server.

To configure the general options for the HTTP download outgoing feed, see Configure outgoing feeds.

About HTTP download
This feed source enables intelligence dissemination through the following channels:

Feed Published data

HTTP download The feed publishes entities and observables in the selected content type through the platform
API. Each time the outgoing feed task runs, it generates a data package containing zero or
more entities, depending on the outgoing feed update strategy, and on the feed data source
containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

HTTP endpoints

The default platform API endpoints for HTTP download outgoing feeds are:

https://<platform_host>/api/open-outgoing-feed-download/ for publicly accessible outgoing feeds. These
feeds publish content that all platform users can access.

https://<platform_host>/api/outgoing-feed-download/for non-publicly accessible outgoing feeds. These feeds
publish content that only the intended recipients can access.

You can append additional elements to the URL to retrieve specific content from an HTTP download outgoing feed:

https://<platform_host>/api/open-outgoing-feed-download/{feed_id}/runs/latest : replace {feed_id}
with the outgoing feed ID reference to retrieve all packages from the latest outgoing feed task run.

The feed ID is the integer value in the &detail={integer} URL element in the URL pointing to the Details tab of
the outgoing feed detail pane.

Page 30 of 66

https://<platform_host>/api/open-outgoing-feed-download/{feed_id}/runs/{run_id} : replace {feed_id}
with the outgoing feed ID reference and {run_id} with the desired outgoing feed task run identifier value to retrieve all
packages form a specific outgoing feed task run.

To retrieve the task run ID, do the following:

On the top navigation bar click  > System jobs > Succeeded .

On the successfully completed system job overview, look for the desired task run ID under the ID column.

https://<platform_host>/api/open-outgoing-feed-download/{feed_id}/runs/{run_id}/content-
blocks/latest: replace {feed_id} with the outgoing feed ID reference and {run_id} with the desired outgoing feed
task run identifier value to retrieve the latest/most recent package from a specific outgoing feed task run.

https://<platform_host>/api/open-outgoing-feed-download/{feed_id}/runs/{run_id}/content-
blocks/{block_id}: replace {feed_id} with the outgoing feed ID reference, {run_id} with the desired outgoing feed
task run identifier value, and {block_id} with the desired content block ID reference to retrieve a specific package
from a specific outgoing feed task run.

To retrieve the content block ID, do the following:

In the web browser address bar, enter the URL pointing to the list of all content blocks in the specified outgoing
feed: https://<platform_host>/api/open-outgoing-feed-download/{feed_id}

The data.content_block JSON array lists the URLs pointing to all the content blocks belonging to the outgoing
feed.

The content block ID is the integer value at the end of the URL.

Example:

{
 "data": {
 "content_blocks": [
 "/api/open-outgoing-feed-download/12/runs/ff7458fg-c63b-4f94-a811-ffa87a254d98/content-
blocks/98",
 "/api/open-outgoing-feed-download/12/runs/678bf255-0835-4994-a0ed-d98ac98aaa58/content-
blocks/44",
 "/api/open-outgoing-feed-download/12/runs/c4a394e9-0a8f-42ca-ad4b-72cc3762afd7/content-
blocks/32",
 "/api/open-outgoing-feed-download/12/runs/bf711b50-c2a1-4f5t-994f-ec1c481ace3d/content-
blocks/11"
],
 "id": 4,
 "name": "Download CSV Line per entity"
 }
}

The same URL format applies to the https://<platform_host>/api/outgoing-feed-download/for non-publicly
accessible HTTP download outgoing feeds.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Page 31 of 66

Transport type Allowed content types

HTTP download ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

 STIX 1.2

Configure the transport type

The HTTP download transport type for outgoing feeds publishes the supported content types to the specified location on
the target HTTP download.

Transport type : from the drop-down menu select HTTP download.

Under Transport configuration set the HTTP transport type options:

Public: default setting: deselected.
Select this checkbox to make the outgoing feed available to all platform groups and to all platform users.
Leave it deselected to make the outgoing feed available only to specific groups. You can select the intended recipient
groups in the Authorized groups drop-down menu.

Authorized groups: restricts access to the outgoing feed to the groups you select from the drop-down menu, and to
their member users.
The Authorized groups option is available only when the Public checkbox is deselected (default setting).

Configure the content type

Warning:
Before deleting a group, check that is not an authorized group in an outgoing feed configuration.
Deleting a group that is currently selected as an authorized group to access the outgoing feed content breaks
the outgoing feed functionality.

If you need to remove such a group:

First, remove it from the Authorized group selection in the relevant outgoing feed(s).

Then, proceed to delete the group.



Page 32 of 66

http://localhost:3000/_ug/manage_groups.html

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The HTTP download transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Page 33 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

Page 34 of 66

http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 35 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value
The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Page 36 of 66

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 37 of 66

Configure Mount point upload transport and content

Set up and configure transport and content types for Mount point upload outgoing feeds to publish
selected platform data to a specific location on a local or network unit.

To configure the general options for the Mount point upload outgoing feed, see Configure outgoing feeds.

About Mount point upload
This feed source enables intelligence dissemination through the following channels:

Feed Published data

Mount point upload The feed publishes entities and observables in the selected content type to the specified
destination location on a local or network unit. Each time the outgoing feed task runs, it
generates a data package containing zero or more entities, depending on the outgoing feed
update strategy, and on the feed data source containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

Mount point upload ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

 STIX 1.2

Page 38 of 66

Configure the transport type

The Mount point upload transport type for outgoing feeds publishes the supported content types to the specified location
on a local or network unit.

Transport type : from the drop-down menu select Mount point upload.

Under Transport configuration set the mount point transport type options:

Mount point path: the path to the local or network unit to save the outgoing feed content to, so as to make it available
for retrieval.
Example: /media/feeds/outgoing/folder

Include documents attached to entities: select this checkbox to to include in the outgoing feed also any attachments
to the entities such as MS Word documents or PDF files.

Configure the content type

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The Mount point upload transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Page 39 of 66

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

Page 40 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Page 41 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value
The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 42 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

Page 43 of 66

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 44 of 66

Configure Syslog push transport and content

Set up and configure transport and content types for Syslog push outgoing feeds to publish selected
platform data to a Syslog server.

To configure the general options for the Syslog push outgoing feed, see Configure outgoing feeds.

About Syslog push
This feed source enables intelligence dissemination through the following channels:

Feed Published data

Syslog push The feed publishes entities and observables in CSV or ArcSight CEF format to the specified
Syslog server. Each time the outgoing feed task runs, it generates a data package containing
zero or more entities, depending on the outgoing feed update strategy, and on the feed data
source containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

Syslog push ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

Configure the transport type

Page 45 of 66

The Syslog push transport type for outgoing feeds publishes the supported content types to an external Syslog server for
log aggregation.

Transport type : from the drop-down menu select Syslog push.

Under Transport configuration set the Syslog push transport type options:

Syslog server host: specify the IP address or the host name of the server handling syslog message log
communications.

Syslog server port: specify the port number of the server handling syslog message log communications. Make sure
the port is open, and that data traffic through the port is not blocked by, for example, a firewall.

Typical port settings for the TCP protocol:

601 for syslog-conn

6514 for syslog over TCP with TLS

Typical port settings for the UDP protocol:

514 for syslog

Protocol: from the drop-down menu select the transmission protocol, either TCP or UDP.

Configure the content type

Content type from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The Syslog push transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Page 46 of 66

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

Page 47 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Page 48 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 49 of 66

Configure TAXII inbox transport and content

Set up and configure transport and content types for TAXII inbox outgoing feeds to publish selected
platform data through the TAXII inbox service.

To configure the general options for the TAXII inbox outgoing feed, see Configure outgoing feeds.

About TAXII inbox
This feed source enables intelligence dissemination through the following channels:

Feed Published data

TAXII inbox The feed publishes entities and observables in the selected content type to the TAXII inbox
service configured for the feed. You can retrieve the content by accessing the TAXII inbox
service endpoint configured for the feed in the platform, and by specifying the name of the
collection the outgoing feed belongs to, as well as the feed name. Each time the outgoing feed
task runs, it generates a data package containing zero or more entities, depending on the
outgoing feed update strategy, and on the feed data source containing data that match the feed
configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

TAXII inbox ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

Page 50 of 66

 STIX 1.2

Transport type Allowed content types

Configure the transport type

The TAXII inbox transport type for outgoing feeds publishes the supported content types through the TAXII inbox service.

Transport type : from the drop-down menu select TAXII inbox .

Under Transport configuration set the TAXII inbox transport type options:

Auto discovery : enter the URL pointing to a TAXII discovery service
(https://taxiiproject.github.io/about/#how-do-you-communicate-available-taxii-services-and-their-
use) that feed consumers can send a request to in order to determine the available TAXII services they can access —
including the TAXII inbox outgoing feed — and poll them for updates.
Example: http://hailataxii.com/taxii-discovery-service

Inbox service URL : enter the URL pointing to the location of the TAXII data collections
(https://taxiiproject.github.io/documentation/sample-use/#data-collections) available through the
TAXII inbox service.
Example:
https://example.com/taxii-inbox

Destination collection name: enter an existing collection name as the target container for the outgoing feed data.
Example:
collection.Default

Taxii version: select the TAXII version your system supports:

Either 1.0 (https://taxiiproject.github.io/releases/1.0/)

Or 1.1 (https://taxiiproject.github.io/releases/1.1/)

EclecticIQ authentication URL: the URL pointing to the EclecticIQ Platform instance, including the endpoint that
takes the user name and password inputs to send them to the authentication mechanism.
Example: http://<platform_host>/api/auth

Username: a valid user name to authenticate and be granted the necessary authorization to access the location of the
outgoing feed content.

Password: a valid password to authenticate and be granted the necessary authorization to access the location of the
outgoing feed content.

Warning: Before configuring a TAXII transport type for an incoming or outgoing feed, make sure the
appropriate TAXII service is correctly configured in the platform sysem settings.

The TAXII inbox transport type requires Cabby. For further details, see the
official Cabby documentation (https://cabby.readthedocs.org/en/latest/), the Cabby public repo
on GitHub (https://github.com/eclecticiq/cabby), and the Cabby download page
(https://pypi.python.org/pypi/cabby/).



Page 51 of 66

http://localhost:3000/_ug/settings_taxii.html
https://cabby.readthedocs.org/en/latest/
https://github.com/EclecticIQ/cabby
https://pypi.python.org/pypi/cabby/
https://taxiiproject.github.io/about/#how-do-you-communicate-available-taxii-services-and-their-use
https://taxiiproject.github.io/documentation/sample-use/#data-collections
https://taxiiproject.github.io/releases/1.0/
https://taxiiproject.github.io/releases/1.1/

SSL certificate authentication: if the TAXII server requires an SSL certificate to authenticate and to access the
corresponding TAXII services, select this checkbox to fill out the required information.

SSL certificate: copy-paste the content of a valid SSL certificate to authenticate.
Example:

-----BEGIN CERTIFICATE REQUEST-----
MIICvDCCAaQCAQAwdzELMAkGA1UEBhMCVVMxDTALBgNVBAgMBFV0YWgxDzANBgNV
BAcMBkxpbmRvbjEWMBQGA1UECgwNRGlnaUNlcnQgSW5jLjERMA8GA1UECwwIRGln
aUNlcnQxHTAbBgNVBAMMFGV4YW1wbGUuZGlnaWNlcnQuY29tMIIBIjANBgkqhkiG
9w0BAQEFAAOCAQ8AMIIBCgKCAQEA8+To7d+2kPWeBv/orU3LVbJwDrSQbeKamCmo
wp5bqDxIwV20zqRb7APUOKYoVEFFOEQs6T6gImnIolhbiH6m4zgZ/CPvWBOkZc+c
1Po2EmvBz+AD5sBdT5kzGQA6NbWyZGldxRthNLOs1efOhdnWFuhI162qmcflgpiI
WDuwq4C9f+YkeJhNn9dF5+owm8cOQmDrV8NNdiTqin8q3qYAHHJRW28glJUCZkTZ
wIaSR6crBQ8TbYNE0dc+Caa3DOIkz1EOsHWzTx+n0zKfqcbgXi4DJx+C1bjptYPR
BPZL8DAeWuA8ebudVT44yEp82G96/Ggcf7F33xMxe0yc+Xa6owIDAQABoAAwDQYJ
KoZIhvcNAQEFBQADggEBAB0kcrFccSmFDmxox0Ne01UIqSsDqHgL+XmHTXJwre6D
hJSZwbvEtOK0G3+dr4Fs11WuUNt5qcLsx5a8uk4G6AKHMzuhLsJ7XZjgmQXGECpY
Q4mC3yT3ZoCGpIXbw+iP3lmEEXgaQL0Tx5LFl/okKbKYwIqNiyKWOMj7ZR/wxWg/
ZDGRs55xuoeLDJ/ZRFf9bI+IaCUd1YrfYcHIl3G87Av+r49YVwqRDT0VDV7uLgqn
29XI1PpVUNCPQGn9p/eX6Qo7vpDaPybRtA2R7XLKjQaF9oXWeCUqy1hvJac9QFO2
97Ob1alpHPoZ7mWiEuJwjBPii6a9M9G30nUo39lBi1w=
-----END CERTIFICATE REQUEST-----

SSL key: copy-paste the content of a valid SSL key to authenticate
Example:

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEA3Tz2mr7SZiAMfQyuvBjM9Oi..Z1BjP5CE/Wm/Rr500P
RK+Lh9x5eJPo5CAZ3/ANBE0sTK0ZsDGMak2m1g7..3VHqIxFTz0Ta1d+NAj
wnLe4nOb7/eEJbDPkk05ShhBrJGBKKxb8n104o/..PdzbFMIyNjJzBM2o5y
5A13wiLitEO7nco2WfyYkQzaxCw0AwzlkVHiIyC..71pSzkv6sv+4IDMbT/
XpCo8L6wTarzrywnQsh+etLD6FtTjYbbrvZ8RQM..Hg2qxraAV++HNBYmNW
kbJ+q+rsJxQlaipn2M4lGuQJEfIxELFDyd3XpxP..Un/82NZNXlPmRIopXs
2T91jiLZEUKQw+n73j26adTbteuEaPGSrTZxBLR..yssO0wWomUyILqVeti
+PK+aXKwguI6bxLGZ3of0UH+mGsSl0mkp7kYZCm..OTQtfeRqP8rDSC7DgA
kHc5ajYqh04AzNFaxjRo+M3IGICUaOdKnXd0Fda..QwfoaX4QlRTgLqb7AN
ZTzM9WbmnYoXrx17kZlT3lsCgYEAm757XI3WJVj..WoLj1+v48WyoxZpcai
uv9bT4Cj+lXRS+gdKHK+SH7J3x2CRHVS+WH/SVC..DxuybvebDoT0TkKiCj
BWQaGzCaJqZa+POHK0klvS+9ln0/6k539p95tfX..X4TCzbVG6+gJiX0ysz
Yfehn5MCgYEAkMiKuWHCsVyCab3RUf6XA9gd3qY..fCTIGtS1tR5PgFIV+G
engiVoWc/hkj8SBHZz1n1xLN7KDf8ySU06MDggB..hJ+gXJKy+gf3mF5Kmj
DtkpjGHQzPF6vOe907y5NQLvVFGXUq/FIJZxB8k..fJdHEm2M4=
-----END RSA PRIVATE KEY-----

SSL key password : enter the SSL password or passphrase for the SSL key. This field is masked.

Verify SSL: if the TAXII server requires an SSL certificate to authenticate and to access the corresponding TAXII
services, you can select this checkbox to test the SSL connection and to verify that it works correctly.

SSL CA bundle file path: enter the path to the CA bundle file containing the root, intermediate, and public
certificates for SSL authentication.

Click Save to store your changes, or Cancel to discard them.

Configure the content type

Page 52 of 66

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The TAXII inbox transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Page 53 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV
The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

Page 54 of 66

http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 55 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value
The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Page 56 of 66

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 57 of 66

Configure TAXII poll transport and content

Set up and configure transport and content types for TAXII poll outgoing feeds to publish selected
platform data through the TAXII polling service.

To configure the general options for the TAXII poll outgoing feed, see Configure outgoing feeds.

About TAXII poll
This feed source enables intelligence dissemination through the following channels:

Feed Published data

TAXII poll The feed publishes entities and observables in the selected content type to the platform TAXII
server. You can retrieve the content by accessing the TAXII polling service endpoint configured
in the platform, and by specifying the name of the outgoing feed. By default, the TAXII poll
endpoint is https://<platform_host>/taxii/poll. Each time the outgoing feed task runs, it
generates a data package containing zero or more entities, depending on the outgoing feed
update strategy, and on the feed data source containing data that match the feed configuration.

To view and to retrieve outgoing feed content, do the following:

On the top navigation bar click Data configuration > Outgoing feeds .

On the Data configuration > Outgoing feeds page, click anywhere on the row corresponding to the outgoing feed
whose content you want to view or retrieve.
The feed detail pane slides in from the side of the screen.

On the outgoing feed detail pane click the Content tab.

On the Content tab, click the name of a package to download it.

Configure the transport type
Under Transport and content you define what you want to publish and how, that is, the data content type and the data
transport type.

Transport type Allowed content types

TAXII poll ArcSight CEF

 EclecticIQ Entities CSV

 EclecticIQ Observables CSV

 EclecticIQ JSON

 Plain text value

Page 58 of 66

 STIX 1.2

Transport type Allowed content types

Configure the transport type

The TAXII poll transport type for outgoing feeds publishes the supported content types to through the TAXII polling
service.

Transport type : from the drop-down menu select TAXII poll .

Under Transport configuration set the TAXII poll transport type options:

Public: default setting: deselected.
Select this checkbox to make the outgoing feed available to all platform groups and to all platform users.
Leave it deselected to make the outgoing feed available only to specific groups. You can select the intended recipient
groups in the Authorized groups drop-down menu.

Authorized groups: restricts access to the outgoing feed to the groups you select from the drop-down menu, and to
their member users.
The Authorized groups option is available only when the Public checkbox is deselected (default setting).

Configure the content type

Content type : from the drop-down menu select the appropriate content type for the data you want to publish through
the outgoing feed.
The selected content type for the feed should match the data source format.
This can vary, depending on the dataset source(s) you retrieve the data from.
The TAXII poll transport type enables fetching data in the following formats:

ArcSight CEF

EclecticIQ Entities CSV

EclecticIQ Observables CSV

EclecticIQ JSON

Plain text value

STIX 1.2

Warning:
Before deleting a group, check that is not an authorized group in an outgoing feed configuration.
Deleting a group that is currently selected as an authorized group to access the outgoing feed content breaks
the outgoing feed functionality.

If you need to remove such a group:

First, remove it from the Authorized group selection in the relevant outgoing feed(s).

Then, proceed to delete the group.



Page 59 of 66

http://localhost:3000/_ug/manage_groups.html

Datasets: from the drop-down menu select one or more existing datasets to use as sources to populate the outgoing
feed.
For the feed not to be empty, at least one selected dataset should contain entities and observables in the same format
as the selected content type.

Update strategy: from the drop-down menu select the preferred method to populate the outgoing feed with data
before publishing it:

Append: every time the outgoing feed task runs, it fetches only new data — new entities and observables since the
previous execution of the feed — to generate the content to publish through the feed.

Replace every time the outgoing feed task runs, it fetches new and existing data — new and existing entities and
observables since the previous execution of the feed — to generate the content to publish through the feed.

Diff: this option is available only for the EclecticIQ Entities CSV and EclecticIQ Observables CSV content types.

Every time the outgoing feed task runs, new data is compared against existing data to identify any differences
between the two datasets at observable-level — any observable added to or removed from the entities in the set —
or at entity-level — any entities added to or removed from the set. Depending on the selected CSV content option,
each row in the CSV output contains information about one entity being added or removed, or one observable being
added or removed.
An extra diff column is added to the output CSV to indicate if a row, and therefore either an entity or an observable,
has been added to or removed from the set.
This option allows you to identify any changes in a feed between two task runs without downloading the whole feed
every time.

ArcSight CEF
The ArcSight CEF (https://www.protect724.hpe.com/docs/doc-1072) content type is suitable for machine
consumption. Typical use cases include feeding an ArcSight CEF outgoing feed to a SIEM system such as ArcSight ESM
(https://saas.hpe.com/en-us/software/siem-security-information-event-management) or to a Syslog server
for further processing.

By default, the ArcSight CEF content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Entities CSV

Page 60 of 66

https://www.protect724.hpe.com/docs/DOC-1072
https://saas.hpe.com/en-us/software/siem-security-information-event-management
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

The EclecticIQ Entities CSV outgoing feed outputs CSV files with column headers where each row holds data describing
one entity.
For example, an indicator, a TTP, and so on.

The EclecticIQ Entities CSV data format enables you to compare different outputs from the same outgoing feed to diff
them and examine any changes at entity-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Entities CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ Observables CSV
The EclecticIQ Observables CSV outgoing feed outputs CSV files with column headers where each row holds data
describing one observable.
For example, an IP address, a hash, a geographic location name, and so on.

The EclecticIQ Observables CSV data format enables you to compare different outputs from the same outgoing feed to
diff them and examine any changes at observable-level. To do so, under Update strategy select Diff.

By default, the EclecticIQ Observables CSV content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Page 61 of 66

http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

EclecticIQ JSON
By default, the EclecticIQ JSON content type outgoing feed includes only first level, original observables:

First level: the extracted data is inside a CybOX object.

Original: the value is extracted as is, that is, the observable holds the actual value found in the CybOX object.

You can include also second level, derived observables by selecting one or both checkboxes under Content
configuration:

Include derived observables: select this checkbox to include derived observables in the outgoing feed.
Derived observables hold a data subset of the original observable they are extracted, that is, derived, from. The
original observable is analyzed to look for specific patterns. When matching data is found, it is extracted and saved to a
distinct, derived observable that holds the analyzed data.
Example:

Original observable is a URI: http://www.evil.com/big/info.php

The corresponding extracted, derived observable is a domain name: evil.com.

Include secondary observables: select this checkbox to include secondary observables in the outgoing feed.
Secondary observables hold data found inside a STIX field, and therefore not included in a CybOX observable object.
When focusing on observables, data retrieved from STIX fields is usually not as relevant as data retrieved from CybOX
fields. When included, secondary observables may introduce data noise.
Example:

A hash or a domain name included in the title or in the description fields of a STIX object.

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the data.information_source.identity.name value in the entity JSON structure:

{
 "data": {
 "information_source": {
 "type": "information-source",
 "identity": {
 "name": "<producer_identity>", // ex.: 'EclecticIQ'
 "type": "identity"
 }
 }
 }
}

Plain text value

Warning: If you select EclecticIQ Observables CSV , you need to choose at least one observable type from
the Observable types drop-down menu, and at least one enrichment observable type from the Enrichment
observable types drop-down menu.



Page 62 of 66

http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#original--level-1
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels
http://localhost:3000/_ug/rules_extract.html#derivation-and-levels

The plain text value content type is suitable for machine consumption. Typical use cases include feeding a plain text value
outgoing feed to an external compatible device to instrument further processing or to trigger a response action.

The plain text value content configuration options set up a rule to define the data pool that qualifies for inclusion in the
outgoing feed. The rule works as follows:

The Field to check a conditional value in condition looks for a specific JSON path pointing to a specific entity field in
the entity JSON structure.

If the previous condition yields matches, the Only use entities that match this conditional value condition looks
at the specified JSON path key for any values matching the literal or the regex data pattern you define in this field.

If the previous conditions yield matches, the Field to take values from condition points to a specific entity field
whose value is fetched and included for publication in the outgoing feed.

Under Content configuration set the Plain text value content type options:

Field to take values from: specifies the location in the entity JSON structure where the values to include in the feed
are stored.
Enter a JSON path pointing to the entity field whose values you want to fetch and include for publication in the outgoing
feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Field to check a conditional value in : this condition works together with Only use entities that match this
conditional value to filter specific entities for the feed.
Enter a JSON path pointing to the entity field you want to use as a filter to select entities whose content you want to
include for publication in the outgoing feed.

The JSON path starts at data: the first member at the beginning of a JSON path needs to be data.

The JSON path is a string that points to a location, that is, a field inside a JSON object. It tells the rule where in the
entity structure it should go look for the corresponding data value.
Think of it as a friend’s address you scribble on the back of a postcard before dropping it into the mailbox.

The JSON path format is a string where dots (.) define JSON parent-child relationships.

Do not include square brackets ([]) in the path input: they are stripped during execution. It is not possible to use
square brackets to point to specific array members.

Only use entities that match this conditional value : this condition works together with Field to check a conditional
value in to filter specific entities for the feed.
Enter a string to define the value to match.

Example

You can configure this rule to send relevant data to an external Snort or Suricata instance, where they can be further
processed or used to initiate a specific response action:

Field to check a conditional value in : data.type.test_mechanisms.test_mechanism_type

Only use entities that match this conditional value : snort

Field to take values from: data.type.test_mechanisms.rules.value

The rule uses the specified conditions to:

Look for platform entities containing Snort rules: data.type.test_mechanisms.test_mechanism_type: snort

Page 63 of 66

If the previous condition yields matching entities, look in those entities if they contain this field:
data.type.test_mechanisms.rules.value

If they do, fetch the value from the field and include it in the outgoing feed.
Matching values are added to the outgoing feed one value per line.
The value in question should be a valid Snort rule for the resulting feed data to be meaningful.
Example:

alert tcp $HOME_NET any -> [72.20.35.70,72.20.35.120] 6661 (msg:\"ET CNC Shadowserver Reported CnC
Server Port 6661 Group 1\"; flags:S; reference:url,doc.emergingthreats.net/bin/view/Main/BotCC;
reference:url,www.shadowserver.org; threshold: type limit, track by_src, seconds 360, count 1;
classtype:trojan-activity; flowbits:set,ET.Evil; flowbits:set,ET.BotccIP; sid:2405018; rev:3633;)

STIX 1.2
The STIX 1.2 content type is suitable for machine consumption. Typical use cases include feeding a STIX 1.2 outgoing
feed to an external STIX-compatible device to instrument further processing or to trigger a response action.

Under Content configuration set the STIX 1.2 content type options:

Override producer: select this checkbox to replace the original producer identity with the one defined in the platform.
Leave it deselected to include the original producer of the information.
This setting changes the following nested XML element in the entity STIX structure:

<stixCommon:Identity>
 <!-- Producer identity, for example 'EclecticIQ' -->
 <stixCommon:Name>EclecticIQ</stixCommon:Name>
</stixCommon:Identity>

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 64 of 66

Outgoing feeds reference

Reference section with lookup information on supported outgoing feed content types and transport
types.

Available outgoing feeds
The overview lists and points to the articles on the available outgoing feeds. Each article describes how to configure the
specific options for each outgoing feed.
Typically, outgoing feeds use different transport types and content types. General configuration options are identical
across all outgoing feeds.

Title Excerpt

Configure email
transport and content

Set up and configure transport and content types for Send email outgoing feeds to publish
selected platform data as email attachments.

Configure FTP
upload transport and
content

Set up and configure transport and content types for FTP upload outgoing feeds to publish
selected platform data to an FTP server.

Configure HTTP
download transport
and content

Set up and configure transport and content types for HTTP download outgoing feeds to publish
selected platform data to an HTTP server.

Configure Mount
point upload
transport and content

Set up and configure transport and content types for Mount point upload outgoing feeds to
publish selected platform data to a specific location on a local or network unit.

Configure Syslog
push transport and
content

Set up and configure transport and content types for Syslog push outgoing feeds to publish
selected platform data to a Syslog server.

Configure TAXII
inbox transport and
content

Set up and configure transport and content types for TAXII inbox outgoing feeds to publish
selected platform data through the TAXII inbox service.

Configure TAXII poll
transport and content

Set up and configure transport and content types for TAXII poll outgoing feeds to publish
selected platform data through the TAXII polling service.

Content types
These are the data formats the platform can process through feeds.
Under Feed type in defines an input format that incoming feeds ingest; out defines an output format that outgoing feeds
publish.

Page 65 of 66

Content type
Feed
type Description

Anubis Cyberfeed
JSON

in JSON format representing entity data as JSON objects.

ArcSight CEF out The Common Event Format is a text-based standard for log records proposed by
ArcSight. It allows sharing, consuming, and parsing event information across devices
such as SIEM platforms and Syslog servers.

Cisco Threat Grid
Samples JSON

in JSON format representing entity data as JSON objects.

EclecticIQ Entities
CSV

out Comma separated CSV format for tabular data representation of entities.

EclecticIQ JSON in,
out

JSON format representing entity data as JSON objects.

EclecticIQ
Observables CSV

out Comma separated CSV format for tabular data representation of observables.

Group-IB accounts,
Group-IB cards,
Group-IB IMEIs

in Group-IB proprietary data format to exchange information on compromised accounts,
payment cards, and mobile devices.

Intel 471 in Intel 471 proprietary data format.

PDF in,
out

Standard PDF format, preferably native (not scanned).

STIX 1.0 in,
out

STIX data model v. 1.0 (http://stixproject.github.io/data-model/1.0/).

STIX 1.1 in,
out

STIX data model v. 1.1 (http://stixproject.github.io/data-model/1.1/).

STIX 1.1.1 in,
out

STIX data model v. 1.1.1 (http://stixproject.github.io/data-model/1.1.1/).

STIX 1.2 in,
out

STIX data model v. 1.2 (http://stixproject.github.io/data-model/1.2/).

Text/Plain text value in,
out

Plain text format. This content type allows you to enter free text and literals, wildcards
(where supported), as well as JSON paths to point to specific entity property fields, and
regex patterns to filter data.

Threat Recon in Threat Recon JSON output returned by the Threat Recon API
(https://threatrecon.co/api). Threat Recon focuses on providiung information
about indicators.

STIX 1.1.1 in FireEye iSIGHT Intelligence Report API outputs reports in STIX 1.1.1 format. Reports
concern threat topics such as vulnerabilities, malware, threat actors, stategies, tactics,
and techniques.

BFK Threat
Intelligence JSON

in BFK reports and NIDs (Network Intrusion Detections) are saved as JSON report entities;
they concern threat topics such as threat actors, targeted victims, tactics, and
techniques.

Page 66 of 66

http://stixproject.github.io/data-model/1.0/
http://stixproject.github.io/data-model/1.1/
http://stixproject.github.io/data-model/1.1.1/
http://stixproject.github.io/data-model/1.2/
https://threatrecon.co/api

Crowdstrike Indicator
JSON

in Indicators retrieved from the Falcon Intelligence platform are stored as JSON; they
concern compromised devices, malicious domains, hashes, and so on starting from a
specified polling date.

Content type
Feed
type Description

Transport types
These are the supported communications protocols the platform uses to publish data through outgoing feeds.

Transport type
Feed
type Description

FTP upload out Custom feed to publish data through an FTP server.

HTTP download out Custom feed to publish data through an HTTP server. By default, the outgoing feed
content is available through the following platform API endpoints: /api/open-
outgoing-feed-download/ for public outgoing feeds, and /api/outgoing-feed-
download/ for private outgoing feeds.

Mount point upload out Custom feed to publish data from a location on a local or network unit.

Send email out Custom feed to publish data as email attachments.

Syslog push out Custom feed to share data with other devices using the Syslog protocol. Usually,
Syslog messages are centralized to a Syslog server.

TAXII inbox out Custom feed using the TAXII inbox service to publish data.

TAXII poll out Custom feed using the TAXII polling service to publish data.

©2017 by EclecticIQ BV. All rights reserved.
Last generated on Oct 20, 2017

Page 67 of 66

	Table of contents
	User guide to EclecticIQ Platform
	Scope
	Goal
	Audience
	Feedback

	Configure outgoing feeds
	Configure the general options
	Set a schedule
	Set TLP filters
	Set reliability and relevancy
	Set observable filters
	Anonymize data
	Skip paths
	Replace paths

	Save options
	Configure transport and content for specific outgoing feeds

	Start and stop feeds
	Manually start a feed
	Manually stop a feed
	Suspend and disable a running feed
	Stop and terminate a running feed

	Configure email transport and content
	About Send email
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Configure FTP upload transport and content
	About FTP upload
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Configure HTTP download transport and content
	About HTTP download
	HTTP endpoints

	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Configure Mount point upload transport and content
	About Mount point upload
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Configure Syslog push transport and content
	About Syslog push
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV

	Configure TAXII inbox transport and content
	About TAXII inbox
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Configure TAXII poll transport and content
	About TAXII poll
	Configure the transport type
	Configure the transport type
	Configure the content type
	ArcSight CEF
	EclecticIQ Entities CSV
	EclecticIQ Observables CSV
	EclecticIQ JSON
	Plain text value
	STIX 1.2

	Outgoing feeds reference
	Available outgoing feeds
	Content types
	Transport types

